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Abstract

Linear Vlasov dispersion theory for a homogeneous, collisionless electron-proton
plasma with Maxwellian velocity distributions is used to examine the damping of Alfvén-
cyclotron fluctuations. Fluctuations of sufficiently long wavelength are essentially un-
damped, but as k), the wavevector component parallel to the background magnetic field
B,, reaches a characteristic dissipation value k4, the protons become cyclotron reso-
nant and damping begins abruptly. For proton cyclotron damping, k4c/w, ~ 1 for
1073 < B, < 107! where B8, = 8mnykpT,/B? and w,/c is the proton inertial length.
At k| < kq, me/my < Pe and B, < 0.10, the electron Landau resonance becomes the
primary contributor to fluctuation dissipation, yielding a damping rate which scales as
wrv/Be (kic/ wp)2 where w,. is the real frequency and k, is the wavevector component per-
pendicular to B,. As 3, increases from 0.10 to 10, the proton Landau resonance makes
an increasing contribution to damping of these waves at k| < kg and 0° < 6 < 30° where
0 = arccos(k - B,). The maximum damping rate due to the proton Landau resonance
scales approximately as (3,(kc/wp)? over 0.50 < £, < 10. Both magnetic transit-time
damping and electric Landau damping may contribute to Landau resonant dissipation; in
the electron Landau resonance regime the former is important only at propagation almost
parallel to B,, whereas proton transit-time damping can be relatively important at both
quasi-parallel and quasi-perpendicular propagation of Alfvén-cyclotron fluctuations.

1. Introduction

Understanding the dissipation of turbulent magnetic fluctuations in the collisionless
plasmas of space and astrophysics is fundamental to comprehending not only the properties
of the turbulence itself, but also the processes by which plasma species are heated. In the
turbulence scenario, large-amplitude, long-wavelength magnetic fluctuations undergo non-
linear processes which cascade their energy to successively shorter wavelengths, leading to
an ensemble of fluctuations with random phases and a broad range of wavevectors; that is,
magnetic turbulence. MHD simulations in homogeneous, collisionless, magnetized plasmas
[Biskamp and Muller, 2000] as well as observations in the much less ideal solar wind [e.g.,
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Matthaeus and Goldstein, 1982] support the picture that, at relatively long wavelengths,
magnetic turbulence satisfies the classic Kolmogorov picture of fluid turbulence so that
the magnetic power spectrum is approximately proportional to k~%/3; this wavenumber
regime is usually termed the “inertial range.” In the Kolmogorov picture the turbulent
energy cascade rate 7. increases with wavenumber as a relatively weak function of k; for
example [See Appendix]:

Ve ~ ack?? (1)

Here a. is a dimensionless parameter that is a function of the turbulence amplitude at long
wavelengths.

Turbulent magnetic fluctuations are subject not only to the cascade process, but
also to collisionless damping which transfers their energy to the plasma particles. In
the inertial range, the fluctuation damping rate = is generally much smaller than the
energy cascade rate. However, |y(k)| increases more steeply with &k than ~., so that the
two quantities become equal at some sufficiently large k£ that depends on the integrated
amplitude of the turbulence. At still larger k, |y| > 7., damping overwhelms the cascade,
the magnetic power spectra decrease more rapidly than k~5/3, and the fluctuations are
said to be in the “dissipation range.” Although magnetic power spectral properties in
the inertial range seem to be relatively robust and independent of the cascade processes,
the properties of dissipation range spectra almost certainly depend upon the details of
the damping. The turbulent cascade usually leads to [0B|/B, << 1 (Here B, is the
background magnetic field) in the dissipation range so that, in this regime, the fluctuations
may be approximated as normal modes of the plasma, and linear theory is appropriate for
describing their dispersion properties.

At wavelengths of the order of or longer than the thermal proton gyroradius, at least
three normal modes can propagate in a homogeneous, isotropic, collisionless plasma: the
Alfvén-cyclotron, the magnetosonic-whistler, and the ion acoustic (also called the “slow”)
modes [Gary, 1993]. The latter is heavily damped unless T, >> T}; as this condition does
not hold in many space plasmas of interest, we do not study this mode here. Although the
other two modes both contribute to observed solar wind magnetic fluctuation spectra, we
focus here on the Alfvén-cyclotron fluctuations.

The literature on the linear kinetic theory of Alfvén-cyclotron modes in collisionless
electron-proton plasmas includes Barnes [1966], Gary [1986], Stiz [1992], Krauss-Varban
et al. [1994], Lysak and Lotko [1996], Leamon et al. [1999], and Cranmer and van Bal-
legooijen [2003]. Such theories have been the basis of a number of quasilinear models for
Alfvén-cyclotron wave heating and acceleration of the solar corona and solar wind; for
examples see the extensive citation lists of Hollweg and Isenberg [2002], or Gary and Saito
[2003]. Computer simulations which have addressed the interactions between an imposed
spectrum of Alfvén-cyclotron fluctuations and the protons or electrons of a collisionless
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plasma include Tanaka et al. [1987, 1989], Geary et al. [1990], Liewer et al. [2001], Of-
man et al. [2002], Gary and Saito [2003], and Gary and Nishimura [2004]. From such
research, it is well established that, at sufficiently large wavevector components parallel to
B,, the primary damping mechanism of these modes is the proton cyclotron resonance,
but that, as the wavevector k is made more oblique to the background magnetic field, this
interaction becomes nonresonant and the Landau resonance becomes the primary means
of wave-particle dissipation.

A series of papers by Leamon et al. [1998a, 1998b, 1999, 2000] analyzed solar wind
observations of magnetic fluctuations and drew conclusions about the dissipation range
of magnetic turbulence in that medium. In order to provide a more complete theoreti-
cal understanding of dissipation range physics, we here have used linear Vlasov theory to
quantify the cyclotron and Landau resonance damping of Alfvén-cyclotron fluctuations,
and to develop scaling laws for (k) which may be used to represent the consequences of
such damping in turbulent cascade models. We consider a homogeneous, isotropic, colli-
sionless plasma. In such a medium the Vlasov equation is generally regarded as providing
an appropriate description for plasma dynamics. We here solve the full linear Vlasov dis-
persion equation using the formalism described in Chapters 5 and 6 of Gary [1993], and
no approximations are made with respect to either plasma or fluctuation parameters.

We consider only Alfvén-cyclotron fluctuations, which have the approximate disper-
sion equation w, ~ kjva and an upper bound to the real frequency of w, < €,. At
k x B, = 0 this mode is left-hand circularly polarized, is very weakly damped at long
wavelengths, and becomes subject to strong proton cyclotron damping at a characteristic
dissipation wavenumber k4 [e.g., Gary, 1999]. At k x B, # 0 the Alfvén-cyclotron mode
is characterized by relatively small compressibility at all directions of propagation, but the
polarization can change to right-hand elliptical at sufficiently oblique propagation [Gary,
1986]. At ky < kg and m./m, < B the Landau wave-electron interaction becomes an
important source of damping at sufficiently oblique propagation. In this regime, Alfvén-
cyclotron fluctuations are known as “kinetic Alfvén waves.” Some representative linear
dispersion plots of w as a function of kjc/w, are illustrated in Gary and Nishimura [2004].

Throughout this manuscript we consider an electron-proton plasma and denote elec-
trons with the subscript e and protons by p. The subscripts || and L denote directions
parallel and perpendicular to the background magnetic field. For the jth species we de-
fine 8; = 8mn;kpT;/B2; the plasma frequency, w; = ,/47rnjejz-/mj; the cyclotron fre-
quency, Q; = e¢;B,/mjc; and the thermal speed, v; = \/kpT|j/m;. The Alfvén speed is
va = Bo/\/4mnymy,. The complex frequency is w = w, + i7, the Landau resonance factor
of the jth species is (; = w/ﬁ|k|| |vj, and the cyclotron resonance factors of the jth species
are Cf = (w£Q;)/V2[kj|v;. We define 6 as the angle between k and B, so that k-B, =
cos(6).



2. Cyclotron resonance and Landau resonance regimes

This section describes our use of linear Vlasov theory to determine three distinct pa-
rameter regimes for which three distinct wave-particle resonances become the most impor-
tant damping mechanisms for Alfvén-cyclotron fluctuations. Isotropic Maxwellian velocity
distributions are assumed for both species. Unless stated otherwise, here and in Section 3
we use the following dimensionless parameters: m,/m, = 1836, v4/c = 10~* and T, = T},.
The last condition implies 3, = 3. and we use these two symbols interchangeably unless
we explicitly state that we have considered possible T, /T), variations.

Figure 1 presents contour plots of the damping rate v/, as a function of the per-
pendicular and parallel components of the wavevector for five different values of 3,. First,
for all five cases, for sufficiently large k|c/w, the damping rate becomes a weak function
of k; that is the contours of constant /€2, are approximately vertical. Below we argue
that this is the regime in which proton cyclotron damping is the dominant dissipation
mechanism; we call this the “proton cyclotron regime.” Second, at 3, = 0.001 and 0.01,
there is a regime of kjc/w, for which the contours are approximately horizontal; that is,
the damping rate is approximately a function of k£, alone. Here damping at the electron
Landau resonance dominates, and we call this the “electron Landau regime.” As (3, further
increases, these contours become more convoluted, yielding a “finger” of increased damp-
ing at k; < k) < kq. Here damping is due primarily to the proton Landau resonance; we
term this the “proton Landau regime.”

Figure 2 represents the real parts of the proton cyclotron, electron Landau, and
proton resonance factors at 3, = 0.10. If |(;| > 3 or |(Ji| > 3, the resonant v lies far from
the thermal part of the velocity distribution f(v|) (e. g., Gary, 1993); then the mode is
nonresonant and the corresponding wave-particle interactions are weak. If the opposite
sense of either inequality holds, it is a necessary but not sufficient condition for resonance
and strong damping by the jth species. The approximately vertical contours of Figure
2(a) are similar in character to the damping contours of the 3, = 0.10 panel of Figure
1, suggesting that proton cyclotron damping is the primary mechanism here. We confirm
this by noting that the condition [(, | = 3.0 lies at kjc/w, ~ 0.6 in Figure 2(a), which
corresponds to the transition from weak to strong damping illustrated in the 3, = 0.10
panel of Figure 1.

Proton cyclotron damping begins abruptly as k| increases, so it is appropriate to
define the proton cyclotron dissipation wavenumber k; as corresponding to this onset
value of parallel wavenumber. To quantify this onset, we follow Stawicki et al. [2001] and
fit the damping rate of Alfvén-cyclotron fluctuations at k x B, = 0 with the following trial

function:
2.2\ M2
~(k kic
P Wy
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where the m; are fitting parameters. At k x B, = 0 and wavenumbers corresponding to
-2 < v/, < 0 on the domain 10~* < 3, < 1 we obtain

my = 0.668,"**

my = 1.17 + 0.4083,"%
0.31

ﬁp0.26

Proton cyclotron damping onsets at k| ~ mgw,/c; we define this to be kq. By fitting linear

m3

theory results to Equation (2) over a range of (3,, we obtain Figure 3. There is no simple
power law scaling which covers all values of 3, illustrated here, but for limited ranges of
this parameter we find

kqc 0.44 _ —

wi:m (107* < 8, <107?) (3a)
P P

kqc 0.26 _
: (107" < B, < 2.0) (3b)

wp ﬁp0.40

Because v,/Q, = \/Bp/2¢/wp, the scaling of the dissipation wavenumber relative to the
thermal proton gyroradius follows immediately and is also plotted in Figure 3. The dis-
sipation wavenumbers derived by Gary [1999] and Gary and Nishimura [2004] are based
on the assumption of a fixed v/, but have (3, scalings similar to that of Equation (3).
Proton cyclotron damping at k x B, = 0 is independent of T./T},, so the scaling of k4
should be independent of this temperature ratio.

Leamon et al. [1999, 2000] considered Alfvén-cyclotron fluctuations propagating at
all angles relative to B, and concluded that the dissipation wavenumber for kinetic Alfvén
waves should scale as kg ~ w,/c. To determine whether the dissipation scale of magnetic
turbulence is set by the ion inertial length scale or by the proton gyroradius, Smith et al.
[2001] examined magnetic power spectra during an unusual low-f. interval in the solar
wind. Defining the dissipation wavenumber as corresponding to a distinct steepening or
break in the magnetic power spectrum, they concluded that the ion inertial scale provided
the better location of the dissipation wavenumber. Our results are consistent with these
observations, predicting kq ~ wy,/c over 1073 < Bp < 10~1; however, our prediction is de-
rived from Alfvén-cyclotron waves with £k, < k|, rather than from the kinetic Alfvén waves
considered by Leamon et al. [1999, 2000] which usually satisfy the opposite inequality.

At k) < kg, proton cyclotron damping is exponentially weak, and other wave-particle
interactions must be responsible for the damping of Alfvén-cyclotron fluctuations. Using
wy =~ kjva and the definition of (; in Section 1,

1\ /2 m, 1 1/2
~ | — d e~ | ——
Cp (ﬂp> . ¢ (mp ﬂe) )
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for the proton and electron Landau resonance factors. Figure 2 confirms these approximate
scalings at 3, = 0.10. If we require that |(;| < 3 is a condition for Landau resonance, Equa-
tion (4) predicts that electrons can be Landau resonant with Alfvén-cyclotron fluctuations
if m./(10my) < fe, and protons can Landau resonate if 0.10 < [,.

We now consider the regime 1072 < 3, < 0.10 and k| < kg where the electron
Landau resonance is the dominant source of dissipation. Figure 4 plots the damping rate
divided by the real frequency as a function of k) and k1 at 3, = 0.10; results at 3, = 0.01
and 0.001 are similar in that the contours of v/w, are approximately independent of k| at
k” < kyq.

Figure 5 plots the damping decrement of obliquely propagating waves as a function of
perpendicular wavenumber for a fixed parallel wavenumber kj ~ kg4/3. For the parameters
plotted here, we find that v/w, scales as k2. To quantify this relationship, we fit families
of v/w, curves to parabolas in & c/wy; over —0.01 < v/Q,, < 0 we obtain

D) _ s (Te me>°'5 500 <@>2 (5)

Wy p Myp Wp

This expression is valid at least for the following ranges of parameters: at T, /T, = 1.0 and
my/me = 1836, 5 x 107* < 3, < 0.1; at 3, = 0.01 and m,,/m. = 1836, 0.25 < T,/T, <
4.0; and at 3, = 0.01 and T, /T, = 1.0, 100 < m,/m. < 1836.

Although this equation has been derived for a prescribed value of kc/w,, Figure 5,
other /w, plots for other values of 3, not shown here, and Fig. 4 of Cranmer and van Bal-
legooijen [2003] all indicate that this scaling is approximately valid for most wavenumbers
such that k) < kq. Earlier scalings for the damping rate of the kinetic Alfvén wave include
v ~ /B by Melrose [1986], a &1/2 dependence by Tanaka et al. [1989], and v ~ k% by
Cranmer and van Ballegooijen [2003]. Eq. (38) of Gang [1992] yields, after the correction
of a typographical error, the same scalings with g, k; and m,/m. as our Equation (5).

At very long wavelengths solar wind fluctuation amplitudes are large, nonlinear tur-
bulent interactions dominate, and the normal mode analysis used here may not be appli-
cable. However, as k increases, the fluctuation amplitudes decrease, w, becomes greater
than v, and normal modes become an appropriate means of describing the fluctuations.
At still shorter wavelengths, |vy| also becomes greater than -, and dissipation becomes
becomes an important energy transfer process. In these latter two regimes Equations (2)
and (5) can be used in models for turbulence in collisionless plasmas to determine how
various damping mechanisms affect the fluctuating magnetic energy power spectra Wp(k).
Examples of such models include the diffusion model of Zhou and Matthaeus [1990] and
the advection-diffusion equation of Cranmer and van Ballegooijen [2003]. Specifically, we
suggest that Equation (5) with w, ~ kjv4 would be an appropriate damping expression to

use in solving the magnetic turbulence transport equation of Cranmer and van Ballegooijen

[2003].



Figure 6 illustrates the contrast between the abrupt onset of proton cyclotron damp-
ing with k) described by Equation (2) and the more gradual increase of dissipation with
k, due to the electron Landau resonance described by Equation (5). For comparison, this
figure also plots the energy cascade rate of Equation (1) rewritten as

o = ac (hefup)*’? (6)
with two different values of a.. A crossing of the v(k) curve and the ~.(k) curve corresponds
to a critical wavenumber at which the dominant energy transfer process changes from
cascade to damping. The magnitude of the proton cyclotron damping rate v(k;) increases
so abruptly with parallel wavenumber that this critical wavenumber is a very weak function
of a.; that is, it is approximately equal to k; for a broad range of energy cascade rates.
Thus, in this case, the wavenumber at onset of the dissipation range is determined by the
local properties of the plasma. In contrast, the magnitude of the damping rate (k) of
the electron Landau resonance regime increases gradually, so that the critical wavenumber
is a much more sensitive function of the cascade rate. This is analogous to the way in
which the dissipation scale is determined by the Kolmogorov theory for fluid turbulence
le.g., Frisch, 1995]; the critical wavenumber is determined not only by the local parameters
but also by the amplitude of the magnetic turbulence at large wavelengths.

We now consider the regime 0.10 < 3, < 10 and k) < kg where the proton Landau
resonance is the dominant damping mechanism at relatively small #. In Figures 1d and
le proton cyclotron damping still yields relatively vertical contours at ky > kgq. But the
increased efficiency of the proton Landau resonance yields an increase of damping which
appears as a finger pointing toward small k| in the panels representing both 3, = 1.0 and
10. Furthermore, at 3, = 10.0 there is another finger corresponding to reduced damping
pointing upward along the line k; = kj. The contours of both fingers are convoluted
functions of both kj and k., so that we have not been able to obtain quantitative scaling
relations in this case. What we have done is derive an approximate scaling relation as
follows: for various values of wavenumber and (3,, we have found the maximum value
of |y|; for the parameters considered here the maximum damping rate is constrained by
0° < 6 < 28°. From these maximum values we obtain

Y. ke ?
max ~ .1 o
22z 0106, (2°)

p p

over 0.5 < B, < 10; at smaller values of 3, this damping decreases much faster than f3,.

For the wavenumber domain illustrated in Figure 1d, 0.5 < Re((,) < 1.0; for Figure
le, 0.1 < Re(¢p) < 0.3. Thus the proton Landau resonance is clearly the source of the
strong damping here. But the ¢, are slowly changing functions of the wavevector in both
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cases, so the details of Figures 1d and le cannot be explained solely by invoking this
resonance. To help understand these fingers, in the following section we examine the roles
of the two distinct damping mechanisms associated with the Landau resonance.

3. Landau damping versus transit-time damping

The Landau resonance at w, = kv corresponds to two distinct types of wave-
particle interactions [Stiz, 1992]. If 0E) # 0, the exchange of field and particle energy in
a thermal plasma leads to Landau damping, the well-known mechanism for dissipation of
electrostatic wave energy. However, if 0B # 0, the interaction of the magnetic moment
of a charged particle with the parallel gradient of the magnetic field leads to “transit-
time magnetic damping” [Barnes, 1966]. The distinct character of these two interactions
suggests that they yield distinct plasma signatures. Although simulations have examined
the electron Landau resonance of Alfvén-cyclotron fluctuations at relatively low . [ Tanaka
et al., 1987, 1989; Geary et al., 1990; Gary and Nishimura, 2004], we are not aware of any
simulations which have considered the ion Landau resonances at higher 3 values so that it
is appropriate to lay the groundwork for future such studies.

To discern the parameter domains over which proton Landau damping and pro-
ton transit-time damping are likely to dominate collisionless dissipation, we constructed
contour plots for the parallel fluctuating electric field ratio |0 E)|?/[6E|? and the parallel
fluctuating magnetic field ratio [§B)|?/|0B|?. Figure 7 is a plot of these two ratios at
Bp = 0.10; Figure 8 illustrates the same two ratios at (3, = 10. Although |5E|||2 =0 at
k x B, = 0, Figure 7 shows that [0E}|?/|0E[* is a monotonically increasing function of k;
(at fixed k1) and Kk (at fixed kj). Similarly, the parallel fluctuating electric field ratio
of Figure 8 is almost a monotonic function of both k) and k.. So Landau damping on
either species is not the likely mechanism for the nonmonotonic contours of damping at
kic/w, < 0.10 in Figures 1d and le. In contrast the parallel fluctuating magnetic field
ratios of Figure 7 and Figure 8 are nonmonotonic as a function of either k) or k_, and the
fingers of Figure 8b bear a strong resemblance to the fingers of Figure le, suggesting that
proton transit-time damping is important at high 3,.

Here we derive an expression to evaluate the relative efficacy of transit-time magnetic
damping versus Landau damping for a plasma species j. Following Stiz [1992], we compare
the force due to the interaction of the magnetic moment of a charged particle with the
parallel gradient of the background magnetic field,

2
dU” _ _m]UJ_

M = ~op, MBI

with the force due to the fluctuating parallel electric field

dvy
dt

m;

€j5E||
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We define the jth species efficacy ratio R; as the square of the ratio of these two forces;
then assuming isotropy and averaging over the velocity distribution we obtain

197 (ko \* [6By (k)
@%)Mﬁ@P @)

R](k) = 4 C2

We further define the part of R;(k) which contains the fluctuation properties as

k||0>2 |(Sl?|||2

p(k) = (wp |5E|||2 (8)

Figures 7b and 8b indicate that contours of constant [§B)|?/|6B|? run approximately
parallel to lines of constant A, so we here consider the direction of propagation as the
primary independent variable. We define quasi-parallel (q-||) propagation as the limit of
0 — 0, and quasi-perpendicular (q-L) propagation as corresponding to 6 ~ 85°.

We first evaluated Equation (7) for the electron Landau regime. Figure 9a shows
that for most angles of propagation, p(k) at . = 0.01 is maximum in the twin limits of
6 — 0 and kc/w, — 0. Choosing values at kc/w, = 0.10 and in the zero # limit, we plot
the resulting quasi-parallel maximum value of p versus 3. in Figure 9b; the results are well

fit by
2
C
pma,m(q - ||) =3.14 <_>
VA

(107% < B < 1) (9)

Be 2
where we have obtained the (c/v4)? scaling from a separate series of computations. Thus
the approximate scaling of the maximum value of the electron efficacy ratio is

Re=(35) (W07 s
16
Therefore, electron transit-time damping may compete with electron Landau damping
as a dissipation mechanism for Alfvén-cyclotron fluctuations primarily at quasi-parallel
propagation. Under the kinetic Alfvén wave conditions of relatively oblique propagation,
Figure 9a indicates that electron Landau damping is the dominant damping mechanism.
Next we evaluated Equation (7) in the proton Landau regime, that is, at kj < kq and
0.10 < Bp < 10. Figure 10 shows that in general there is a second relative maximum for
p(f) at strongly oblique propagation, and at 3, > 1, this quasi-perpendicular maximum
can be larger than the pp,q4(¢—||) at smaller values of ,. Our computations show that the
p(q— L) scales, like p(q—||), as (¢/v4)?, but unlike Equation (9) this quantity is a relatively
weak function of 8,. Then the primary 3, dependence of R,,(¢— L) is approximately the Bg
dependence implied by the v;* factor of Equation (7). We get R,(¢—L) > 1 over 2 < 3, <
10; for this range of (3, proton transit-time damping is stronger than proton Landau
damping both at quasi-perpendicular and (via Figure 10) quasi-parallel propagation of
Alfvén-cyclotron fluctuations.



Table 1. Alfvén-cyclotron damping regimes

Resonance Regime Wavenumber Range (8 Range

Proton Cyclotron kg < Kk 1073 <3, <10
Electron Landau k| < kq 1073 < B, < 0.10
Proton Landau k< kq 0.10 < B, <10

4. Conclusions

We have used full Vlasov linear dispersion theory in a homogeneous, magnetized
plasma to study the damping of Alfvén-cyclotron fluctuations in an electron-proton plasma
over a broad range of (3, values. By examining the k; versus kj contour plots of the
damping and cyclotron resonance factors of these fluctuations, we have demonstrated that
there are three distinct regimes for the damping of these waves; these are summarized in
Table 1. We have derived analytic expressions for k4c/w, describing the abrupt onset of
proton cyclotron damping [Equation (2)], and for the damping rate due to the electron
Landau resonance [Equation (5)]. We have furthermore studied the competition between
transit-time damping and Landau damping in the two Landau resonance regimes; we find
that magnetic transit-time damping is relatively important for electrons only at quasi-
parallel propagation, but that at sufficiently high 3, proton transit-time damping can be
important at both quasi-parallel and quasi-perpendicular propagation.

We have interpreted our results in terms of their possible observational consequences
for magnetic power spectra of cascading Alfvén-cyclotron fluctuations. Proton cyclotron
damping of Alfvén-cyclotron fluctuations has an abrupt onset with increasing parallel
wavenumber; the resulting critical wavenumber is almost independent of the cascade rate.
Thus, if this mechanism is the primary source of fluctuation damping, the transition from
the inertial range to the dissipation range should be primarily a function of local plasma
parameters, specifically (3,, and should scale as kg ~ w,/c over 1072 < 3, < 1071, The
electron Landau resonance is the most important damping mechanism for Alfvén-cyclotron
fluctuations at k| < kg in plasmas with 3, < 0.10. The damping of these kinetic Alfvén
waves increases gradually, as in Equation (5), implying that, if the electron Landau res-
onance is the primary source of fluctuation dissipation, the transition from inertial range
to dissipation range should be a sensitive function of the turbulent energy cascade rate,
and thereby a function of the turbulence amplitude at large scales, which is a nonlocal
quantity.

Although both Leamon et al. [2000] and we associate the onset of the dissipation
range with a wavenumber which scales as the ion inertial length, we disagree as to how
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this conclusion is reached. Leamon et al. [1998a] examined solar wind magnetic fluctu-
ation spectra in both the inertial and dissipation ranges, and concluded that “parallel-
propagating waves, such as Alfvén waves, are inconsistent with the data.” Leamon et al.
[2000] further stated: “Solar wind observational evidence suggest the relevance of the ion

7 and concluded that “...a significant fraction of dissipation in the corona

inertial scale...
and solar wind likely proceeds through a perpendicular cascade and small-scale reconnec-
tion, coupled to kinetic processes that act at oblique wavevectors.” We have theoretically
derived a dissipation wavenumber which scales with the ion inertial length from fluctua-
tions which propagate at k x B, = 0; furthermore, we associate the onset of dissipation of
obliquely propagating Alfvén-cyclotron waves with the fundamentally nonlocal amplitude
of the turbulent spectrum. These differences suggest that the question of scaling for the
onset of dissipation of Alfvén-cyclotron turbulence is worthy of further study, via both
observations and computer simulations.

Figure 11 is a cartoon illustrating our current view concerning the onset of the dissi-
pation range. The left-hand panel indicates the consequences of proton cyclotron damping
where k4 is independent of the cascade rate and the turbulence amplitude. The right-hand
panel suggests that the wavenumber at which electron Landau damping dominates the
cascade rate is a function of the turbulence amplitude; stronger turbulence pushes the
onset of the dissipation range to shorter wavelengths. The right-hand panel of Figure 11
is analogous to the case of turbulence in Navier-Stokes fluids, whereas the left-hand panel
represents a result which is specific (and may be unique) to collisionless plasmas [e.g., Li
et al., 2001].

Our results are based upon the assumption that the plasma consists only of electrons
and protons. Of course, the solar corona, the solar wind, and most space and astrophysical
plasmas bear minor ions which are usually relatively tenuous compared to the protons but
which nevertheless may have important consequences for wave-particle scattering at the
low frequencies considered here. A natural extension of this research would be to include
heavy ions such as alpha particles as a minority species. Another obvious extension of this
work would be to study the damping of the magnetosonic-whistler mode and, if T, /T, >
1, the ion acoustic mode.

Appendix

The fluctuation energy cascade rate stated as Equation (1) can be derived from
Kolmogorov-type arguments for turbulent fluids. For isotropic turbulence in three dimen-
sions, two fundamental assumptions are made. First, it is assumed that the energy flux
through k space is a constant

— = Cp (A-1)

11



where £ = |k| is the omnidirectional wavenumber, v, is the RMS fluctuation velocity in a
wavenumber band near wavenumber k, 7y is the energy-transfer timescale at wavenumber &,
and (' is a constant. Second, it is assumed that the energy-transfer time 7 is proportional
to the eddy-turnover time (eddy lifetime) L /v, which is 1/kvy, for an eddy of scale L = k1.
This second assumption is written

Tk — Cz— (A—Q)

where Cy is a numerical constant of order unity. Combining expressions (A-1) and (A-2)
to eliminate 74 yields
v = (C1C)Y3 k13 (A —3)

Utilizing equation (A-3), equation (A-2) becomes

e = Ch (0102)_1/3 k23 (A—4)

1/3

Expression (A-3) is used to evaluate (C1C)"/° at the integral scale (k = k,), yielding

(C1Cx)Y? = w kL3 (A—5)

where v, is the amplitude of the turbulent fluctuations at the integral scale (at large scales)
and where k, is the wavenumber of the integral scale (L, = k! is the correlation length
of the turbulence). Using equation (A-5), equation (A-4) for the energy-transfer timescale

T, becomes

e = Cyuyt kY323 (A —6)

In expression (A-6) Cs is a constant of order unity, and v, and k, are properties of the
amplitude of the turbulence at large scales [cf. eq. (7.8) of Frisch, 1995; eq. (6.11) of Pope,
2000]. Note that if the amplitude of the turbulence v, increases, then the energy-transfer
timescale decreases.
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Figure Captions

Figure 1. The damping rate (v/€2,) of Alfvén-cyclotron fluctuations as a function of
the parallel and perpendicular components of the wavevector at five values of 3, as labeled.

Figure 2. (a) The real part of the proton cyclotron resonance factor ¢, (b) the
real part of the electron Landau resonance factor (., and (c) the real part of the proton
Landau resonance factor ¢, for Alfvén-cyclotron fluctuations as functions of the parallel

14



and perpendicular components of the wavevector at 3, = 0.10.

Figure 3. The proton cyclotron dissipation wavenumber for Alfvén-cyclotron fluctua-
tions at k x B, = 0 as a function of 3,. The solid line represents kqc/w, and the dashed
line represents kquvp /2.

Figure 4. The damping rate divided by the real frequency (y/w,) of Alfvén-cyclotron
fluctuations as a function of the parallel and perpendicular components of the wavevector
at B, = 0.10.

Figure 5. The damping rate divided by the real frequency (v/w,) of Alfvén-cyclotron
fluctuations as a function of perpendicular wavenumber for three values of 3. as labeled.
Here k| ~ kq/3 and —0.01 < v/, < 0.

Figure 6. The line with solid dots represents ~(kj), the damping rate of Alfvén-
cyclotron fluctuations at k x B, = 0 in a 3, = 0.01 plasma. The line with open dots
represents (k1 ), the damping rate of Alfvén-cyclotron fluctuations at kjc/w, = 0.8 in a
Bp = 0.01 plasma. The two dashed lines represent the assumed cascade rate of Equation
(1) with different values of a. as labeled.

Figure 7. (a) The parallel fluctuating electric field ratio and (b) the parallel fluctu-
ating magnetic field ratio of Alfvén-cyclotron fluctuations as functions of the parallel and
perpendicular components of the wavevector at 3, = 0.10.

Figure 8. (a) The parallel fluctuating electric field ratio and (b) the parallel fluctu-
ating magnetic field ratio of Alfvén-cyclotron fluctuations as functions of the parallel and
perpendicular components of the wavevector at 3, = 10.

Figure 9. (a) The quantity p(k) defined by Equation (8) as a function of § for three
different wavenumbers of Alfvén-cyclotron fluctuations at 3, = 0.01. (b) The dots represent
maximum values of p(k) (that is, the value in the limits of vanishing 6 and vanishing
wavenumber) as a function of 3,. The dashed line represents Equation (9).

Figure 10. The quantity p(k) defined by Equation (8) as a function of € for three
different values of 3, for Alfvén-cyclotron fluctuations at kc/w, = 0.05.

Figure 11. Cartoon illustrating possible differences between turbulent magnetic power
spectra which are subject to two different types of damping. The left hand panel illustrates
the possible consequences of the abrupt onset of proton cyclotron damping. The right
hand panel shows the possible consequences of the more gradual onset of electron Landau
damping.
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